Nalaganje...

In silico learning of tumor evolution through mutational time series

Cancer arises through the accumulation of somatic mutations over time. Understanding the sequence of mutation occurrence during cancer progression can assist early and accurate diagnosis and improve clinical decision-making. Here we employ long short-term memory (LSTM) networks, a class of recurrent...

Popoln opis

Shranjeno v:
Bibliografske podrobnosti
izdano v:Proc Natl Acad Sci U S A
Main Authors: Auslander, Noam, Wolf, Yuri I., Koonin, Eugene V.
Format: Artigo
Jezik:Inglês
Izdano: National Academy of Sciences 2019
Teme:
Online dostop:https://ncbi.nlm.nih.gov/pmc/articles/PMC6510994/
https://ncbi.nlm.nih.gov/pubmed/31015295
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1073/pnas.1901695116
Oznake: Označite
Brez oznak, prvi označite!