Nalaganje...
In silico learning of tumor evolution through mutational time series
Cancer arises through the accumulation of somatic mutations over time. Understanding the sequence of mutation occurrence during cancer progression can assist early and accurate diagnosis and improve clinical decision-making. Here we employ long short-term memory (LSTM) networks, a class of recurrent...
Shranjeno v:
| izdano v: | Proc Natl Acad Sci U S A |
|---|---|
| Main Authors: | , , |
| Format: | Artigo |
| Jezik: | Inglês |
| Izdano: |
National Academy of Sciences
2019
|
| Teme: | |
| Online dostop: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6510994/ https://ncbi.nlm.nih.gov/pubmed/31015295 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1073/pnas.1901695116 |
| Oznake: |
Označite
Brez oznak, prvi označite!
|