Yüklüyor......
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...
Kaydedildi:
| Yayımlandı: | Sci Rep |
|---|---|
| Asıl Yazarlar: | , , , , , , , , , , , , , , , , , , , , , , , , |
| Materyal Türü: | Artigo |
| Dil: | Inglês |
| Baskı/Yayın Bilgisi: |
Nature Publishing Group UK
2017
|
| Konular: | |
| Online Erişim: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5643429/ https://ncbi.nlm.nih.gov/pubmed/29038455 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41598-017-13448-3 |
| Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|