Yüklüyor......

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Sci Rep
Asıl Yazarlar: Leger, Stefan, Zwanenburg, Alex, Pilz, Karoline, Lohaus, Fabian, Linge, Annett, Zöphel, Klaus, Kotzerke, Jörg, Schreiber, Andreas, Tinhofer, Inge, Budach, Volker, Sak, Ali, Stuschke, Martin, Balermpas, Panagiotis, Rödel, Claus, Ganswindt, Ute, Belka, Claus, Pigorsch, Steffi, Combs, Stephanie E., Mönnich, David, Zips, Daniel, Krause, Mechthild, Baumann, Michael, Troost, Esther G. C., Löck, Steffen, Richter, Christian
Materyal Türü: Artigo
Dil:Inglês
Baskı/Yayın Bilgisi: Nature Publishing Group UK 2017
Konular:
Online Erişim:https://ncbi.nlm.nih.gov/pmc/articles/PMC5643429/
https://ncbi.nlm.nih.gov/pubmed/29038455
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41598-017-13448-3
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!