טוען...

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Sci Rep
Main Authors: Leger, Stefan, Zwanenburg, Alex, Pilz, Karoline, Lohaus, Fabian, Linge, Annett, Zöphel, Klaus, Kotzerke, Jörg, Schreiber, Andreas, Tinhofer, Inge, Budach, Volker, Sak, Ali, Stuschke, Martin, Balermpas, Panagiotis, Rödel, Claus, Ganswindt, Ute, Belka, Claus, Pigorsch, Steffi, Combs, Stephanie E., Mönnich, David, Zips, Daniel, Krause, Mechthild, Baumann, Michael, Troost, Esther G. C., Löck, Steffen, Richter, Christian
פורמט: Artigo
שפה:Inglês
יצא לאור: Nature Publishing Group UK 2017
נושאים:
גישה מקוונת:https://ncbi.nlm.nih.gov/pmc/articles/PMC5643429/
https://ncbi.nlm.nih.gov/pubmed/29038455
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41598-017-13448-3
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!