A carregar...

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, w...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Sci Rep
Main Authors: Leger, Stefan, Zwanenburg, Alex, Pilz, Karoline, Lohaus, Fabian, Linge, Annett, Zöphel, Klaus, Kotzerke, Jörg, Schreiber, Andreas, Tinhofer, Inge, Budach, Volker, Sak, Ali, Stuschke, Martin, Balermpas, Panagiotis, Rödel, Claus, Ganswindt, Ute, Belka, Claus, Pigorsch, Steffi, Combs, Stephanie E., Mönnich, David, Zips, Daniel, Krause, Mechthild, Baumann, Michael, Troost, Esther G. C., Löck, Steffen, Richter, Christian
Formato: Artigo
Idioma:Inglês
Publicado em: Nature Publishing Group UK 2017
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC5643429/
https://ncbi.nlm.nih.gov/pubmed/29038455
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1038/s41598-017-13448-3
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!