A carregar...

Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion

Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset t...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Comput Intell Neurosci
Main Authors: Chandler, Benjamin, Mingolla, Ennio
Formato: Artigo
Idioma:Inglês
Publicado em: Hindawi Publishing Corporation 2016
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC4908250/
https://ncbi.nlm.nih.gov/pubmed/27340396
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1155/2016/6425257
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!