Cargando...

Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion

Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado en:Comput Intell Neurosci
Autores principales: Chandler, Benjamin, Mingolla, Ennio
Formato: Artigo
Lenguaje:Inglês
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://ncbi.nlm.nih.gov/pmc/articles/PMC4908250/
https://ncbi.nlm.nih.gov/pubmed/27340396
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1155/2016/6425257
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!