ロード中...

Mitigation of Effects of Occlusion on Object Recognition with Deep Neural Networks through Low-Level Image Completion

Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset t...

詳細記述

保存先:
書誌詳細
出版年:Comput Intell Neurosci
主要な著者: Chandler, Benjamin, Mingolla, Ennio
フォーマット: Artigo
言語:Inglês
出版事項: Hindawi Publishing Corporation 2016
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC4908250/
https://ncbi.nlm.nih.gov/pubmed/27340396
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1155/2016/6425257
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!