ロード中...

Spatially Weighted Principal Component Regression for High-dimensional Prediction

We consider the problem of using high dimensional data residing on graphs to predict a low-dimensional outcome variable, such as disease status. Examples of data include time series and genetic data measured on linear graphs and imaging data measured on triangulated graphs (or lattices), among many...

詳細記述

保存先:
書誌詳細
出版年:Inf Process Med Imaging
主要な著者: Shen, Dan, Zhu, Hongtu
フォーマット: Artigo
言語:Inglês
出版事項: 2015
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC4511401/
https://ncbi.nlm.nih.gov/pubmed/26213452
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/978-3-319-19992-4_60
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!