Carregant...

Probabilistic predictive principal component analysis for spatially misaligned and high‐dimensional air pollution data with missing observations

Accurate predictions of pollutant concentrations at new locations are often of interest in air pollution studies on fine particulate matters (PM(2.5)), in which data is usually not measured at all study locations. PM(2.5) is also a mixture of many different chemical components. Principal component a...

Descripció completa

Guardat en:
Dades bibliogràfiques
Publicat a:Environmetrics
Autors principals: Vu, Phuong T., Larson, Timothy V., Szpiro, Adam A.
Format: Artigo
Idioma:Inglês
Publicat: 2019
Matèries:
Accés en línia:https://ncbi.nlm.nih.gov/pmc/articles/PMC7313548/
https://ncbi.nlm.nih.gov/pubmed/32581624
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1002/env.2614
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!