A carregar...

State Space Model with hidden variables for reconstruction of gene regulatory networks

BACKGROUND: State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method,...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Main Authors: Wu, Xi, Li, Peng, Wang, Nan, Gong, Ping, Perkins, Edward J, Deng, Youping, Zhang, Chaoyang
Formato: Artigo
Idioma:Inglês
Publicado em: BioMed Central 2011
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC3287571/
https://ncbi.nlm.nih.gov/pubmed/22784622
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/1752-0509-5-S3-S3
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!