ロード中...
State Space Model with hidden variables for reconstruction of gene regulatory networks
BACKGROUND: State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method,...
保存先:
| 主要な著者: | , , , , , , |
|---|---|
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
BioMed Central
2011
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC3287571/ https://ncbi.nlm.nih.gov/pubmed/22784622 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/1752-0509-5-S3-S3 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|