ロード中...
Improved individual and population-level HbA1c estimation using CGM data and patient characteristics
Machine learning and linear regression models using CGM and participant data reduced HbA1c estimation error by up to 26% compared to the GMI formula, and exhibit superior performance in estimating the median of HbA1c at the cohort level, potentially of value for remote clinical trials interrupted by...
保存先:
| 出版年: | J Diabetes Complications |
|---|---|
| 主要な著者: | , , , , , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
Elsevier Inc.
2021
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8316291/ https://ncbi.nlm.nih.gov/pubmed/34127370 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.jdiacomp.2021.107950 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|