ロード中...

Improved individual and population-level HbA1c estimation using CGM data and patient characteristics

Machine learning and linear regression models using CGM and participant data reduced HbA1c estimation error by up to 26% compared to the GMI formula, and exhibit superior performance in estimating the median of HbA1c at the cohort level, potentially of value for remote clinical trials interrupted by...

詳細記述

保存先:
書誌詳細
出版年:J Diabetes Complications
主要な著者: Grossman, Joshua, Ward, Andrew, Crandell, Jamie L., Prahalad, Priya, Maahs, David M., Scheinker, David
フォーマット: Artigo
言語:Inglês
出版事項: Elsevier Inc. 2021
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC8316291/
https://ncbi.nlm.nih.gov/pubmed/34127370
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.jdiacomp.2021.107950
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!