Načítá se...
Improved individual and population-level HbA1c estimation using CGM data and patient characteristics
Machine learning and linear regression models using CGM and participant data reduced HbA1c estimation error by up to 26% compared to the GMI formula, and exhibit superior performance in estimating the median of HbA1c at the cohort level, potentially of value for remote clinical trials interrupted by...
Uloženo v:
| Vydáno v: | J Diabetes Complications |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
Elsevier Inc.
2021
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8316291/ https://ncbi.nlm.nih.gov/pubmed/34127370 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.jdiacomp.2021.107950 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|