Lataa...
ESTIMATION AND INFERENCE IN METABOLOMICS WITH NON-RANDOM MISSING DATA AND LATENT FACTORS
High throughput metabolomics data are fraught with both non-ignorable missing observations and unobserved factors that influence a metabolite’s measured concentration, and it is well known that ignoring either of these complications can compromise estimators. However, current methods to analyze thes...
Tallennettuna:
| Julkaisussa: | Ann Appl Stat |
|---|---|
| Päätekijät: | , , |
| Aineistotyyppi: | Artigo |
| Kieli: | Inglês |
| Julkaistu: |
2020
|
| Aiheet: | |
| Linkit: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8248477/ https://ncbi.nlm.nih.gov/pubmed/34221212 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1214/20-aoas1328 |
| Tagit: |
Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
|