ロード中...

Computing Leapfrog Regularization Paths with Applications to Large-Scale K-mer Logistic Regression

High-dimensional statistics deals with statistical inference when the number of parameters or features p exceeds the number of observations n (i.e., [Formula: see text]). In this case, the parameter space must be constrained either by regularization or by selecting a small subset of [Formula: see te...

詳細記述

保存先:
書誌詳細
出版年:J Comput Biol
第一著者: Benner, Philipp
フォーマット: Artigo
言語:Inglês
出版事項: Mary Ann Liebert, Inc., publishers 2021
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC8219187/
https://ncbi.nlm.nih.gov/pubmed/33739865
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1089/cmb.2020.0284
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!