Yüklüyor......
Computing Leapfrog Regularization Paths with Applications to Large-Scale K-mer Logistic Regression
High-dimensional statistics deals with statistical inference when the number of parameters or features p exceeds the number of observations n (i.e., [Formula: see text]). In this case, the parameter space must be constrained either by regularization or by selecting a small subset of [Formula: see te...
Kaydedildi:
| Yayımlandı: | J Comput Biol |
|---|---|
| Yazar: | |
| Materyal Türü: | Artigo |
| Dil: | Inglês |
| Baskı/Yayın Bilgisi: |
Mary Ann Liebert, Inc., publishers
2021
|
| Konular: | |
| Online Erişim: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8219187/ https://ncbi.nlm.nih.gov/pubmed/33739865 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1089/cmb.2020.0284 |
| Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|