Загрузка...
Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments
With continued advances in Geographic Information Systems and related computational technologies, statisticians are often required to analyze very large spatial datasets. This has generated substantial interest over the last decade, already too vast to be summarized here, in scalable methodologies f...
Сохранить в:
| Опубликовано в: : | Stat Anal Data Min |
|---|---|
| Главные авторы: | , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
2019
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8048149/ https://ncbi.nlm.nih.gov/pubmed/33868538 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1002/sam.11413 |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|