Cargando...
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geos...
Guardado en:
| Publicado en: | J Am Stat Assoc |
|---|---|
| Autores principales: | , , , |
| Formato: | Artigo |
| Lenguaje: | Inglês |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5927603/ https://ncbi.nlm.nih.gov/pubmed/29720777 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1080/01621459.2015.1044091 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|