Cargando...
Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG
The quality and quantity of training data are crucial to the performance of a deep-learning-based brain-computer interface (BCI) system. However, it is not practical to record EEG data over several long calibration sessions. A promising time- and cost-efficient solution is artificial data generation...
Guardado en:
| Publicado en: | Front Hum Neurosci |
|---|---|
| Autores principales: | , , , , , , , |
| Formato: | Artigo |
| Lenguaje: | Inglês |
| Publicado: |
Frontiers Media S.A.
2021
|
| Materias: | |
| Acceso en línea: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7990774/ https://ncbi.nlm.nih.gov/pubmed/33776673 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/fnhum.2021.645952 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|