Načítá se...
Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data
This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N <...
Uloženo v:
| Vydáno v: | Int J Behav Dev |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
2021
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7928428/ https://ncbi.nlm.nih.gov/pubmed/33664535 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1177/0165025420979365 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|