ロード中...

Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data

This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N <...

詳細記述

保存先:
書誌詳細
出版年:Int J Behav Dev
主要な著者: Shi, Dexin, DiStefano, Christine, Zheng, Xiaying, Liu, Ren, Jiang, Zhehan
フォーマット: Artigo
言語:Inglês
出版事項: 2021
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7928428/
https://ncbi.nlm.nih.gov/pubmed/33664535
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1177/0165025420979365
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!