ロード中...

A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses

We propose a novel generative adversarial network (GAN)-based image denoising method that utilizes heterogeneous losses. In order to improve the restoration quality of the structural information of the generator, the heterogeneous losses, including the structural loss in addition to the conventional...

詳細記述

保存先:
書誌詳細
出版年:Sensors (Basel)
主要な著者: Cho, Sung In, Park, Jae Hyeon, Kang, Suk-Ju
フォーマット: Artigo
言語:Inglês
出版事項: MDPI 2021
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7915760/
https://ncbi.nlm.nih.gov/pubmed/33567620
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/s21041191
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!