ロード中...

Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring

Robotic agents should be able to learn from sub-symbolic sensor data and, at the same time, be able to reason about objects and communicate with humans on a symbolic level. This raises the question of how to overcome the gap between symbolic and sub-symbolic artificial intelligence. We propose a sem...

詳細記述

保存先:
書誌詳細
出版年:Front Robot AI
主要な著者: Zuidberg Dos Martires, Pedro, Kumar, Nitesh, Persson, Andreas, Loutfi, Amy, De Raedt, Luc
フォーマット: Artigo
言語:Inglês
出版事項: Frontiers Media S.A. 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7806026/
https://ncbi.nlm.nih.gov/pubmed/33501267
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/frobt.2020.00100
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!