تحميل...
HVGH: Unsupervised Segmentation for High-Dimensional Time Series Using Deep Neural Compression and Statistical Generative Model
Humans perceive continuous high-dimensional information by dividing it into meaningful segments, such as words and units of motion. We believe that such unsupervised segmentation is also important for robots to learn topics such as language and motion. To this end, we previously proposed a hierarchi...
محفوظ في:
| الحاوية / القاعدة: | Front Robot AI |
|---|---|
| المؤلفون الرئيسيون: | , , , , , |
| التنسيق: | Artigo |
| اللغة: | Inglês |
| منشور في: |
Frontiers Media S.A.
2019
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7805757/ https://ncbi.nlm.nih.gov/pubmed/33501130 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3389/frobt.2019.00115 |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|