ロード中...

Synthetic minority oversampling of vital statistics data with generative adversarial networks

OBJECTIVE: Minority oversampling is a standard approach used for adjusting the ratio between the classes on imbalanced data. However, established methods often provide modest improvements in classification performance when applied to data with extremely imbalanced class distribution and to mixed-typ...

詳細記述

保存先:
書誌詳細
出版年:J Am Med Inform Assoc
主要な著者: Koivu, Aki, Sairanen, Mikko, Airola, Antti, Pahikkala, Tapio
フォーマット: Artigo
言語:Inglês
出版事項: Oxford University Press 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7750982/
https://ncbi.nlm.nih.gov/pubmed/32885818
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1093/jamia/ocaa127
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!