A carregar...

SynSigGAN: Generative Adversarial Networks for Synthetic Biomedical Signal Generation

SIMPLE SUMMARY: This paper proposes a novel generative adversarial networks model, SynSigGAN, to generate any kind of synthetic biomedical signals. The generation of synthetic signals eliminates confidentiality concerns and accessibility problem of medical data. Synthetic data can be utilized for tr...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Biology (Basel)
Main Authors: Hazra, Debapriya, Byun, Yung-Cheol
Formato: Artigo
Idioma:Inglês
Publicado em: MDPI 2020
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC7761837/
https://ncbi.nlm.nih.gov/pubmed/33287366
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/biology9120441
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!