A carregar...
Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference
We present a novel approach for training deep neural networks in a Bayesian way. Compared to other Bayesian deep learning formulations, our approach allows for quantifying the uncertainty in model parameters while only adding very few additional parameters to be optimized. The proposed approach uses...
Na minha lista:
| Publicado no: | Sensors (Basel) |
|---|---|
| Main Authors: | , , |
| Formato: | Artigo |
| Idioma: | Inglês |
| Publicado em: |
MDPI
2020
|
| Assuntos: | |
| Acesso em linha: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7660222/ https://ncbi.nlm.nih.gov/pubmed/33113927 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/s20216011 |
| Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|