Načítá se...

Accurate segmentation of prostate cancer histomorphometric features using a weakly supervised convolutional neural network

Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric techniques have been used to assess the glandular epithelium in automated detection and classification pipelines; however, they are often rigid in their implementation, and their performance suffers on large da...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:J Med Imaging (Bellingham)
Hlavní autoři: Bukowy, John D., Foss, Halle, McGarry, Sean D., Lowman, Allison K., Hurrell, Sarah L., Iczkowski, Kenneth A., Banerjee, Anjishnu, Bobholz, Samuel A., Barrington, Alexander, Dayton, Alex, Unteriner, Jackson, Jacobsohn, Kenneth, See, William A., Nevalainen, Marja T., Nencka, Andrew S., Ethridge, Tyler, Jarrard, David F., LaViolette, Peter S.
Médium: Artigo
Jazyk:Inglês
Vydáno: Society of Photo-Optical Instrumentation Engineers 2020
Témata:
On-line přístup:https://ncbi.nlm.nih.gov/pmc/articles/PMC7550797/
https://ncbi.nlm.nih.gov/pubmed/33062803
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1117/1.JMI.7.5.057501
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!