Cargando...

Accurate segmentation of prostate cancer histomorphometric features using a weakly supervised convolutional neural network

Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric techniques have been used to assess the glandular epithelium in automated detection and classification pipelines; however, they are often rigid in their implementation, and their performance suffers on large da...

Descrición completa

Gardado en:
Detalles Bibliográficos
Publicado en:J Med Imaging (Bellingham)
Main Authors: Bukowy, John D., Foss, Halle, McGarry, Sean D., Lowman, Allison K., Hurrell, Sarah L., Iczkowski, Kenneth A., Banerjee, Anjishnu, Bobholz, Samuel A., Barrington, Alexander, Dayton, Alex, Unteriner, Jackson, Jacobsohn, Kenneth, See, William A., Nevalainen, Marja T., Nencka, Andrew S., Ethridge, Tyler, Jarrard, David F., LaViolette, Peter S.
Formato: Artigo
Idioma:Inglês
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Assuntos:
Acceso en liña:https://ncbi.nlm.nih.gov/pmc/articles/PMC7550797/
https://ncbi.nlm.nih.gov/pubmed/33062803
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1117/1.JMI.7.5.057501
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!