ロード中...

Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation

This paper proposes a novel feature selection method utilizing Rényi min-entropy-based algorithm for achieving a highly efficient brain–computer interface (BCI). Usually, wavelet packet transformation (WPT) is extensively used for feature extraction from electro-encephalogram (EEG) signals. For the...

詳細記述

保存先:
書誌詳細
出版年:Brain Inform
主要な著者: Rahman, Md. Asadur, Khanam, Farzana, Ahmad, Mohiuddin, Uddin, Mohammad Shorif
フォーマット: Artigo
言語:Inglês
出版事項: Springer Berlin Heidelberg 2020
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC7297893/
https://ncbi.nlm.nih.gov/pubmed/32548772
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s40708-020-00108-y
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!