Загрузка...
Multiclass EEG signal classification utilizing Rényi min-entropy-based feature selection from wavelet packet transformation
This paper proposes a novel feature selection method utilizing Rényi min-entropy-based algorithm for achieving a highly efficient brain–computer interface (BCI). Usually, wavelet packet transformation (WPT) is extensively used for feature extraction from electro-encephalogram (EEG) signals. For the...
Сохранить в:
| Опубликовано в: : | Brain Inform |
|---|---|
| Главные авторы: | , , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
Springer Berlin Heidelberg
2020
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7297893/ https://ncbi.nlm.nih.gov/pubmed/32548772 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s40708-020-00108-y |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|