Загрузка...
Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes
BACKGROUND: Heterogeneity in the definition and measurement of complex diseases in Genome-Wide Association Studies (GWAS) may lead to misdiagnoses and misclassification errors that can significantly impact discovery of disease loci. While well appreciated, almost all analyses of GWAS data consider r...
Сохранить в:
| Опубликовано в: : | BMC Bioinformatics |
|---|---|
| Главные авторы: | , , |
| Формат: | Artigo |
| Язык: | Inglês |
| Опубликовано: |
BioMed Central
2020
|
| Предметы: | |
| Online-ссылка: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7204256/ https://ncbi.nlm.nih.gov/pubmed/32381021 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s12859-020-3387-z |
| Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|