Загрузка...

Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes

BACKGROUND: Heterogeneity in the definition and measurement of complex diseases in Genome-Wide Association Studies (GWAS) may lead to misdiagnoses and misclassification errors that can significantly impact discovery of disease loci. While well appreciated, almost all analyses of GWAS data consider r...

Полное описание

Сохранить в:
Библиографические подробности
Опубликовано в: :BMC Bioinformatics
Главные авторы: Shafquat, Afrah, Crystal, Ronald G., Mezey, Jason G.
Формат: Artigo
Язык:Inglês
Опубликовано: BioMed Central 2020
Предметы:
Online-ссылка:https://ncbi.nlm.nih.gov/pmc/articles/PMC7204256/
https://ncbi.nlm.nih.gov/pubmed/32381021
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s12859-020-3387-z
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!