Načítá se...
Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes
BACKGROUND: Heterogeneity in the definition and measurement of complex diseases in Genome-Wide Association Studies (GWAS) may lead to misdiagnoses and misclassification errors that can significantly impact discovery of disease loci. While well appreciated, almost all analyses of GWAS data consider r...
Uloženo v:
| Vydáno v: | BMC Bioinformatics |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
BioMed Central
2020
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC7204256/ https://ncbi.nlm.nih.gov/pubmed/32381021 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1186/s12859-020-3387-z |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|