Caricamento...

Deep learning-based Attenuation Correction in the Absence of Structural Information for Whole-body PET Imaging

Deriving accurate structural maps for attenuation correction (AC) of whole-body PET remains challenging. Common problems include truncation, inter-scan motion, and erroneous transformation of structural voxel-intensities to PET μ-map values (e.g. modality artifacts, implanted devices, or contrast ag...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Pubblicato in:Phys Med Biol
Autori principali: Dong, Xue, Lei, Yang, Wang, Tonghe, Higgins, Kristin, Liu, Tian, Curran, Walter J., Mao, Hui, Nye, Jonathon A., Yang, Xiaofeng
Natura: Artigo
Lingua:Inglês
Pubblicazione: 2020
Soggetti:
Accesso online:https://ncbi.nlm.nih.gov/pmc/articles/PMC7099429/
https://ncbi.nlm.nih.gov/pubmed/31869826
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1088/1361-6560/ab652c
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !