ロード中...
Modeling and classification of voluntary and imagery movements for brain–computer interface from fNIR and EEG signals through convolutional neural network
Practical brain–computer interface (BCI) demands the learning-based adaptive model that can handle diverse problems. To implement a BCI, usually functional near-infrared spectroscopy (fNIR) is used for measuring functional changes in brain oxygenation and electroencephalography (EEG) for evaluating...
保存先:
| 出版年: | Health Inf Sci Syst |
|---|---|
| 主要な著者: | , , |
| フォーマット: | Artigo |
| 言語: | Inglês |
| 出版事項: |
Springer International Publishing
2019
|
| 主題: | |
| オンライン・アクセス: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6790205/ https://ncbi.nlm.nih.gov/pubmed/31656595 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/s13755-019-0081-5 |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|