ロード中...

Efficient Laplace Approximation for Bayesian Registration Uncertainty Quantification

This paper presents a novel approach to modeling the pos terior distribution in image registration that is computationally efficient for large deformation diffeomorphic metric mapping (LDDMM). We develop a Laplace approximation of Bayesian registration models entirely in a bandlimited space that ful...

詳細記述

保存先:
書誌詳細
出版年:Med Image Comput Comput Assist Interv
主要な著者: Wang, Jian, Wells, William M., Golland, Polina, Zhang, Miaomiao
フォーマット: Artigo
言語:Inglês
出版事項: 2018
主題:
オンライン・アクセス:https://ncbi.nlm.nih.gov/pmc/articles/PMC6533616/
https://ncbi.nlm.nih.gov/pubmed/31134217
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/978-3-030-00928-1_99
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!