A carregar...
SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS
Accurate segmentation of pelvic organs from magnetic resonance (MR) images plays an important role in image-guided radiotherapy. However, it is a challenging task due to inconsistent organ appearances and large shape variations. Fully convolutional network (FCN) has recently achieved state-of-the-ar...
Na minha lista:
| Publicado no: | Proc IEEE Int Symp Biomed Imaging |
|---|---|
| Main Authors: | , , , |
| Formato: | Artigo |
| Idioma: | Inglês |
| Publicado em: |
2018
|
| Assuntos: | |
| Acesso em linha: | https://ncbi.nlm.nih.gov/pmc/articles/PMC6193482/ https://ncbi.nlm.nih.gov/pubmed/30344892 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/ISBI.2018.8363713 |
| Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|