Chargement en cours...

SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS

Accurate segmentation of pelvic organs from magnetic resonance (MR) images plays an important role in image-guided radiotherapy. However, it is a challenging task due to inconsistent organ appearances and large shape variations. Fully convolutional network (FCN) has recently achieved state-of-the-ar...

Description complète

Enregistré dans:
Détails bibliographiques
Publié dans:Proc IEEE Int Symp Biomed Imaging
Auteurs principaux: Feng, Zishun, Nie, Dong, Wang, Li, Shen, Dinggang
Format: Artigo
Langue:Inglês
Publié: 2018
Sujets:
Accès en ligne:https://ncbi.nlm.nih.gov/pmc/articles/PMC6193482/
https://ncbi.nlm.nih.gov/pubmed/30344892
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1109/ISBI.2018.8363713
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!