Caricamento...
Predicting malignancy of pulmonary ground-glass nodules and their invasiveness by random forest
BACKGROUND: The purpose of this study was to develop a predictive model that could accurately predict the malignancy of the pulmonary ground-glass nodules (GGNs) and the invasiveness of the malignant GGNs. METHODS: The authors built two binary classification models that could predict the malignancy...
Salvato in:
| Pubblicato in: | J Thorac Dis |
|---|---|
| Autori principali: | , , , , , , , , , , , , |
| Natura: | Artigo |
| Lingua: | Inglês |
| Pubblicazione: |
AME Publishing Company
2018
|
| Soggetti: | |
| Accesso online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5863133/ https://ncbi.nlm.nih.gov/pubmed/29600078 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.21037/jtd.2018.01.88 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|