Ładuje się......
Predicting malignancy of pulmonary ground-glass nodules and their invasiveness by random forest
BACKGROUND: The purpose of this study was to develop a predictive model that could accurately predict the malignancy of the pulmonary ground-glass nodules (GGNs) and the invasiveness of the malignant GGNs. METHODS: The authors built two binary classification models that could predict the malignancy...
Zapisane w:
| Wydane w: | J Thorac Dis |
|---|---|
| Główni autorzy: | , , , , , , , , , , , , |
| Format: | Artigo |
| Język: | Inglês |
| Wydane: |
AME Publishing Company
2018
|
| Hasła przedmiotowe: | |
| Dostęp online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5863133/ https://ncbi.nlm.nih.gov/pubmed/29600078 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.21037/jtd.2018.01.88 |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|