טוען...

Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers

Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:PLoS One
Main Authors: Ahmad, Muhammad, Protasov, Stanislav, Khan, Adil Mehmood, Hussain, Rasheed, Khattak, Asad Masood, Khan, Wajahat Ali
פורמט: Artigo
שפה:Inglês
יצא לאור: Public Library of Science 2018
נושאים:
גישה מקוונת:https://ncbi.nlm.nih.gov/pmc/articles/PMC5756090/
https://ncbi.nlm.nih.gov/pubmed/29304512
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0188996
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!