טוען...
Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers
Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said...
שמור ב:
| הוצא לאור ב: | PLoS One |
|---|---|
| Main Authors: | , , , , , |
| פורמט: | Artigo |
| שפה: | Inglês |
| יצא לאור: |
Public Library of Science
2018
|
| נושאים: | |
| גישה מקוונת: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5756090/ https://ncbi.nlm.nih.gov/pubmed/29304512 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0188996 |
| תגים: |
הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|