Načítá se...
Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers
Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said...
Uloženo v:
| Vydáno v: | PLoS One |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Artigo |
| Jazyk: | Inglês |
| Vydáno: |
Public Library of Science
2018
|
| Témata: | |
| On-line přístup: | https://ncbi.nlm.nih.gov/pmc/articles/PMC5756090/ https://ncbi.nlm.nih.gov/pubmed/29304512 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0188996 |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo otaguje tento záznam!
|