Cargando...

Longitudinal High-Dimensional Principal Components Analysis with Application to Diffusion Tensor Imaging of Multiple Sclerosis

We develop a flexible framework for modeling high-dimensional imaging data observed longitudinally. The approach decomposes the observed variability of repeatedly measured high-dimensional observations into three additive components: a subject-specific imaging random intercept that quantifies the cr...

Descrición completa

Gardado en:
Detalles Bibliográficos
Publicado en:Ann Appl Stat
Main Authors: Zipunnikov, Vadim, Greven, Sonja, Shou, Haochang, Caffo, Brian, Reich, Daniel S., Crainiceanu, Ciprian
Formato: Artigo
Idioma:Inglês
Publicado: 2014
Assuntos:
Acceso en liña:https://ncbi.nlm.nih.gov/pmc/articles/PMC4316386/
https://ncbi.nlm.nih.gov/pubmed/25663955
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!