A carregar...

Longitudinal High-Dimensional Principal Components Analysis with Application to Diffusion Tensor Imaging of Multiple Sclerosis

We develop a flexible framework for modeling high-dimensional imaging data observed longitudinally. The approach decomposes the observed variability of repeatedly measured high-dimensional observations into three additive components: a subject-specific imaging random intercept that quantifies the cr...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Publicado no:Ann Appl Stat
Main Authors: Zipunnikov, Vadim, Greven, Sonja, Shou, Haochang, Caffo, Brian, Reich, Daniel S., Crainiceanu, Ciprian
Formato: Artigo
Idioma:Inglês
Publicado em: 2014
Assuntos:
Acesso em linha:https://ncbi.nlm.nih.gov/pmc/articles/PMC4316386/
https://ncbi.nlm.nih.gov/pubmed/25663955
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!