Lataa...

Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer

PURPOSE: The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijät: Lee, Tsair-Fwu, Chao, Pei-Ju, Ting, Hui-Min, Chang, Liyun, Huang, Yu-Jie, Wu, Jia-Ming, Wang, Hung-Yu, Horng, Mong-Fong, Chang, Chun-Ming, Lan, Jen-Hong, Huang, Ya-Yu, Fang, Fu-Min, Leung, Stephen Wan
Aineistotyyppi: Artigo
Kieli:Inglês
Julkaistu: Public Library of Science 2014
Aiheet:
Linkit:https://ncbi.nlm.nih.gov/pmc/articles/PMC3938504/
https://ncbi.nlm.nih.gov/pubmed/24586971
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1371/journal.pone.0089700
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!