Caricamento...
CENTER-ADJUSTED INFERENCE FOR A NONPARAMETRIC BAYESIAN RANDOM EFFECT DISTRIBUTION
Dirichlet process (DP) priors are a popular choice for semiparametric Bayesian random effect models. The fact that the DP prior implies a non-zero mean for the random effect distribution creates an identifiability problem that complicates the interpretation of, and inference for, the fixed effects t...
Salvato in:
| Autori principali: | , , |
|---|---|
| Natura: | Artigo |
| Lingua: | Inglês |
| Pubblicazione: |
2011
|
| Soggetti: | |
| Accesso online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC3870168/ https://ncbi.nlm.nih.gov/pubmed/24368876 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.5705/ss.2009.180 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|