Caricamento...
States versus Rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning
Reinforcement learning (RL) uses sequential experience with situations (“states”) and outcomes to assess actions. Whereas model-free RL uses this experience directly, in the form of a reward prediction error (RPE), model-based RL uses it indirectly, building a model of the state transition and outco...
Salvato in:
| Autori principali: | , , , |
|---|---|
| Natura: | Artigo |
| Lingua: | Inglês |
| Pubblicazione: |
2010
|
| Soggetti: | |
| Accesso online: | https://ncbi.nlm.nih.gov/pmc/articles/PMC2895323/ https://ncbi.nlm.nih.gov/pubmed/20510862 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.neuron.2010.04.016 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne! !
|