טוען...

States versus Rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning

Reinforcement learning (RL) uses sequential experience with situations (“states”) and outcomes to assess actions. Whereas model-free RL uses this experience directly, in the form of a reward prediction error (RPE), model-based RL uses it indirectly, building a model of the state transition and outco...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
Main Authors: Gläscher, Jan, Daw, Nathaniel, Dayan, Peter, O’Doherty, John P.
פורמט: Artigo
שפה:Inglês
יצא לאור: 2010
נושאים:
גישה מקוונת:https://ncbi.nlm.nih.gov/pmc/articles/PMC2895323/
https://ncbi.nlm.nih.gov/pubmed/20510862
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.neuron.2010.04.016
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!