ロード中...

A Machine-Learning Tool Concurrently Models Single Omics and Phenome Data for Functional Subtyping and Personalized Cancer Medicine

One of the major challenges in defining clinically-relevant and less heterogeneous tumor subtypes is assigning biological and/or clinical interpretations to etiological (intrinsic) subtypes. Conventional clustering/subtyping approaches often fail to define such subtypes, as they involve several disc...

詳細記述

保存先:
書誌詳細
主要な著者: Gift Nyamundanda, Katherine Eason, Justin Guinney, Christopher J. Lord, Anguraj Sadanandam
フォーマット: Artigo
言語:Inglês
出版事項: MDPI AG 2020-09-01
シリーズ:Cancers
主題:
オンライン・アクセス:https://www.mdpi.com/2072-6694/12/10/2811
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!