Cargando...

Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals

SIMPLE SUMMARY: Radiogenomics enables prediction of the status and prognosis of patients using non-invasively obtained imaging data. Current machine learning (ML) methods used in radiogenomics require huge datasets, which involve the handling of large heterogeneous datasets from multiple cohorts/hos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado en:Cancers (Basel)
Autores principales: Kawaguchi, Risa K., Takahashi, Masamichi, Miyake, Mototaka, Kinoshita, Manabu, Takahashi, Satoshi, Ichimura, Koichi, Hamamoto, Ryuji, Narita, Yoshitaka, Sese, Jun
Formato: Artigo
Lenguaje:Inglês
Publicado: MDPI 2021
Materias:
Acceso en línea:https://ncbi.nlm.nih.gov/pmc/articles/PMC8306149/
https://ncbi.nlm.nih.gov/pubmed/34298824
https://ncbi.nlm.nih.govhttp://dx.doi.org/10.3390/cancers13143611
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!