Carregant...
Unsupervised Deep Anomaly Detection in Chest Radiographs
The purposes of this study are to propose an unsupervised anomaly detection method based on a deep neural network (DNN) model, which requires only normal images for training, and to evaluate its performance with a large chest radiograph dataset. We used the auto-encoding generative adversarial netwo...
Guardat en:
| Publicat a: | J Digit Imaging |
|---|---|
| Autors principals: | , , , , , , , , , |
| Format: | Artigo |
| Idioma: | Inglês |
| Publicat: |
Springer International Publishing
2021
|
| Matèries: | |
| Accés en línia: | https://ncbi.nlm.nih.gov/pmc/articles/PMC8289984/ https://ncbi.nlm.nih.gov/pubmed/33555397 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1007/s10278-020-00413-2 |
| Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|